CMSC201 Computer Science I for Majors

Lecture 23 – Hexadecimal and Color Printing

UMBC

Last Class We Covered

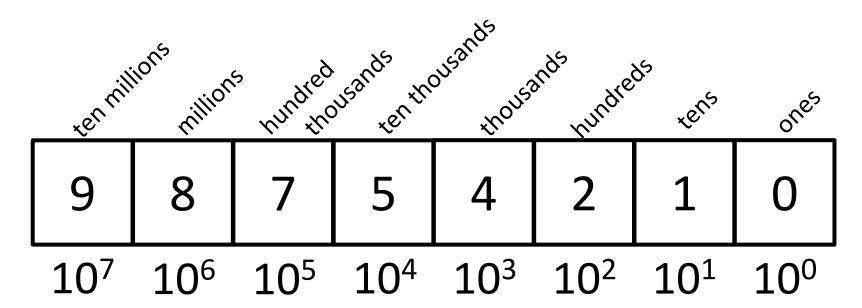
- ASCII values
- Short circuit evaluation

Project 3

Any Questions from Last Time?

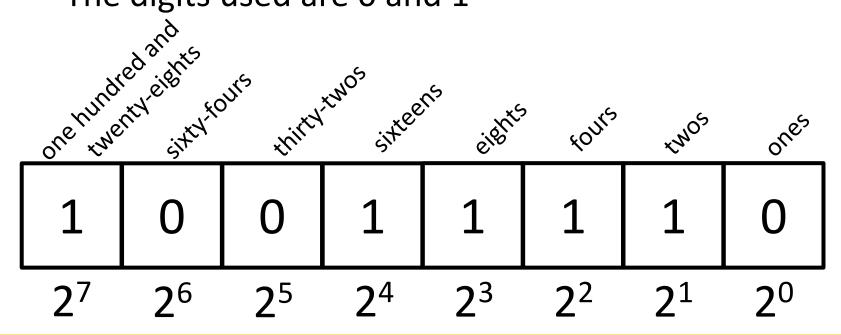
Today's Objectives

- To understand more about how data is represented inside the computer
 - Hexadecimal numbers
- To show how to print in color


 To learn a possibly useful method for your Project 3

Hexadecimal Numbers

Decimal Representation


- Decimal uses 10 digits
 - Decimal, deci = 10
 - The digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

Binary Representation

- Binary uses 2 digits
 - Binary, bi = 2
 - The digits used are 0 and 1

- Hexadecimal Representation

 Hexadecimal (orginal "hex") uses 16 digits

 Hexadecimal hex are plus dest = 10 16

 The digital used are 0, 15 2, 3, 4, 5, 6, 7, 8, and 9

 Another are plus dest are 10, 10, 0, 13, E (14), and F (15)

	tho this	tho thirty sixtes thon, our line, sixty line, ton sug tho sug, sixtes							
	F	D	Α	8	6	3	1	0	
•	16 ⁷	16 ⁶	16 ⁵	16 ⁴	16 ³	16 ²	16 ¹	16 ⁰	

Hexadecimal Representation

- Hexadecimal (or just "hex") uses 16 digits
 - Hexadecimal, hex = 6 plus deci = $10 \rightarrow 16$
 - The digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9
 - And letters A (10), B (11), C (12), D (13), E (14), and F (15)

Hex to Binary Conversion

 A hexadecimal digit can be easily represented as four digits of binary (with leading zeros)

Hex	Binary	Hex	Binary	Hex	Binary	Hex	Binary
0	0000	4	0100	8	1000	C	1100
1	0001	5	0101	9	1001	D	1101
2	0010	6	0110	A	1010	E	1110
3	0011	7	0111	В	1011	F	1111

- This makes conversion very simple
 - -7A0F becomes 0111 1010 0000 1111
 - -1100 0010 0110 1001 becomes C269

Hex to Decimal Conversion

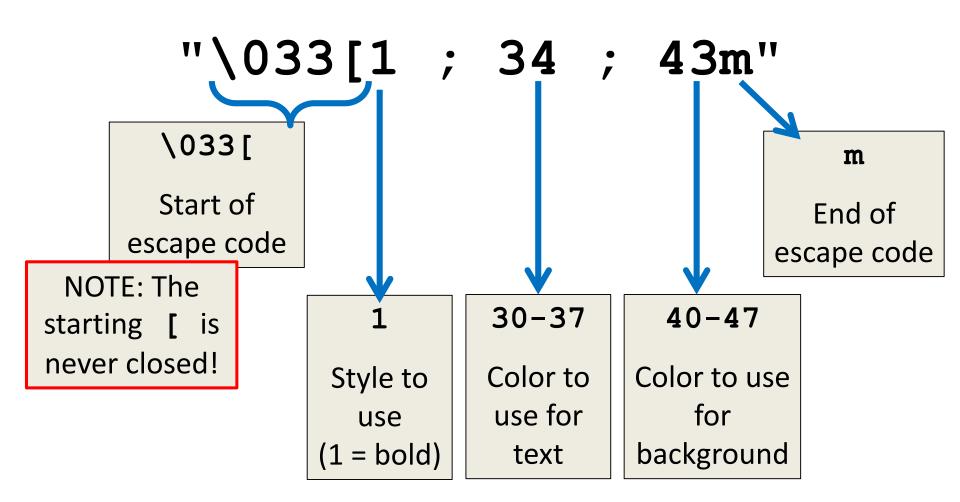
- Possible to convert between decimal and hex
 - But it requires calculating out multiples of 16
- Simpler to make a "side trip" to binary as an in-between step when converting
 - 240 becomes 1111 0000 becomes F0
 - **FO** is equal to $(15 * 16^1) + (0 * 16^0) = 240 + 0 = 240$
 - -7D becomes 0111 1101 becomes 125
 - 7D is equal to $(7 * 16^1) + (13 * 16^0) = 112 + 13 = 125$

Number System Notation

- Because number systems share a subset of the same digits, it may be confusing which is which
 - For example, what is the value of 10?
 - In decimal it's 10, in binary it's 2, and in hex it's 16
- To prevent this, numbers may often be prefixed with 0b, 0d, or 0x (binary, decimal, hex):
 - 0b1100 is binary, and has a value of 12
 - 0x15 is hexadecimal, and has a value of 21

Printing in Color

UMBC


ANSI Escape Codes

- To change the color of the background and text, we can use ANSI escape codes
 - Works in many languages, not just Python

- To use the codes, simply use print()
 - Just like "\t" turns into a tab, these won't be "printed," but will change how the text looks
 - For example, print("\033[1;34;43m") changes text to blue, and background to yellow

Syntax of ANSI Escape Color Codes

UMBC

Color Values and Reset

- The colors available are black, red, green, yellow, blue, magenta, cyan, and white
 - For text color, they are 30 37, in order
 - For background, they are 40 − 47, in order
- This is a perfect use for a dictionary!
 - Store the color name as the key, and the number as the value; no need to memorize the numbers
- To reset to default colors, use "\033[0m"

Example Usages

```
START = "\033[1;"]
RESET = "\033[0m"]
COLORS = { 'black': '30', 'red': '31', 'green': '32', 'yellow': '33',
          'blue': '34', 'magenta': '35', 'cyan': '36', 'white': '37'}
>>> print("\033[1;36;40m" + "Dogs are great, even in cyan" + RESET)
Dogs are great, even in cyan
>>> print(START + COLORS["red"] + ";44m" + "Red on blue!" + RESET)
>>> print("\033[1;30;42m")
>>> print("Until it's reset, it prints black on green from now on!")
Until it's reset, it prints black on green from now on!
>>> print("\033[0m")
\rightarrow \Rightarrow print("\033[1;32;45m" + "Why would you do this?" + RESET)
```

Function to Print In Color

- Printing in color can be very useful when trying to distinguish different types of output
 - Like debugging vs normal program output
- We've provided a function for you under the "Livecoding" on the course website
 - Feel free to use it in your Project 3 for debugging
 - (Do <u>NOT</u> make your output hard to read, though!)
 - (Your TA will take off points if it's obnoxious!)

Possibly Helpful Method

The .isdigit() Method

Works on a string, returns True or False

```
>>> numDogs = "101"
>>> numDogs.isdigit()
  True
>>> "3.14".isdigit()
  False
>>> "7".isdigit()
  True
>>> "201 ".isdigit()
  False
```


Daily CS History

- Hemachandra
 - Was a Jain scholar, poet, and polymath
 - Lived from 1088 to 1173 in India
 - Came up with the Fibonacci sequence
 50 years before Fibonacci
 - While coming up with different long and short syllable combinations for traditional poetry

आचार्य हेस्बस्ट्र

[बि.सं. १२१४ की ताड़पत्र-प्रति के आधार पर]

– https://youtu.be/_32rgS8ClKw?t=1m54s

Announcements

- Project 3 design is due on Friday, May 4th
 - Project itself is due on Friday, May 11th
- Survey #3 out on Monday, May 7th
 - Final exam metacognition quiz out on BB same day
- Course evaluations are out now
 - Please complete them
- Final exam is Friday, May 18th from 6 to 8 PM

UMBC

Final Exam Locations

- Find your room ahead of time!
- Engineering 027 Sections 8, 9, 10, 11, 12
 Section 6

Meyerhoff 030 - Sections 2, 3, 4, 5
 Sections 14, 15, 16, 17, 30

Image Sources

- Hemachandra:
 - https://commons.wikimedia.org/wiki/File:Hemachandra.gif